
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



International Journal of Infectious Diseases 97 (2020) 303–305
Perspective

Iron: Innocent bystander or vicious culprit in COVID-19
pathogenesis?

Marvin Edeasa,b,*, Jumana Salehc, Carole Peyssonnauxa,b

aUniversité de Paris, INSERM U1016, Institut Cochin, CNRS UMR8104, Paris, France
b Laboratory of Excellence GR-Ex, Paris, France
cCollege of Medicine, Sultan Qaboos University, Oman

A R T I C L E I N F O

Article history:
Received 5 May 2020
Received in revised form 26 May 2020
Accepted 27 May 2020

Keywords:
Hyper-ferritinemia
Hypercoagulability
Iron homeostasis
Ferroptosis
Oxidative stress
Mitochondria

A B S T R A C T

The coronavirus 2 (SARS-CoV-2) pandemic is viciously spreading through the continents with rapidly
increasing mortality rates. Current management of COVID-19 is based on the premise that respiratory
failure is the leading cause of mortality. However, mounting evidence links accelerated pathogenesis in
gravely ill COVID-19 patients to a hyper-inflammatory state involving a cytokine storm. Several
components of the heightened inflammatory state were addressed as therapeutic targets. Another key
component of the heightened inflammatory state is hyper-ferritinemia which reportedly identifies
patients with increased mortality risk. In spite of its strong association with mortality, it is not yet clear if
hyper-ferritinemia in COVID-19 patients is merely a systemic marker of disease progression, or a key
modulator in disease pathogenesis. Here we address implications of a possible role for hyper-
ferritinemia, and altered iron homeostasis in COVID-19 pathogenesis, and potential therapeutic targets in
this regard.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
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Introduction

The coronavirus 2019 (COVID-19) pandemic has taken the
world by surprise as it viciously spread through the continents
with rapidly increasing mortality rates. Current management of
COVID-19 is based on the premise that respiratory failure is the
leading cause of fatalities (Zhou et al., 2020). Nevertheless,
mounting evidence points to drastic systemic events taking place
that contribute to accelerated COVID-19 pathogenesis. The
“cytokine storm” is a notion that is reportedly hailed as the
hallmark of the COVID-19 hyper-inflammatory state (Mehta et al.,
2020). Consecutive studies linked COVID-19 related hyper-
inflammation to systemic events including hypercoagulability,
oxidative stress and altered iron metabolism (Mehta et al., 2020;
Phua et al., 2020). These events were linked to accelerated
pathogenesis in gravely ill COVID-19 patients as highlighted in a
recent perspective (Moore and June, 2020). Several components of
the heightened inflammatory state have been proposed as
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therapeutic targets, particularly IL-6 blockers as drugs of more
relevance in COVID-19 management than steroids, however
concerns of prolonging viral clearance were stated (Moore and
June, 2020).

Hyper-ferritinemia has been described as a cardinal feature that
predicted with high significance the increased mortality risk
(Mehta et al., 2020; Phua et al., 2020). These studies demonstrated
serum ferritin levels in COVID-19 non-survivors that exceeded the
levels in the survivors by two-fold. In spite of the strong association
with mortality, it is not yet clear if hyper-ferritinemia in COVID-19
patients is merely a systemic marker of disease progression, or a
key modulator in disease pathogenesis.

Recently we showed that hepcidin, the key iron regulatory
molecule, plays a major role during inflammatory processes
(Bessman et al., 2020). However, the role and management of a
dysregulated iron state in COVID-19 pathogenesis has not yet been
addressed.

Is iron a key strategic player in COVID-19 pathogenesis?

Increasing evidence shows that inflammation, oxidative stress
and altered iron homeostasis are inevitably linked at a systemic
level (Kernan and Carcillo, 2017). This perspective elaborates on
the potential aspect of altered iron homeostasis, marked by hyper-
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ferritinemia, and its potential role in COVID-19 pathogenesis and
management strategies.

Iron is an essential trace element that plays a role in systemic
oxygen transfer, and acts as an electron donor or acceptor in many
biological functions. Ferritin is the primary site of iron storage in
the cell mainly in its ferric state (Fe3+). Ferritin can carry up to
4500 iron molecules in its core (Kell and Pretorius, 2014).
Generally, systemic inflammations are associated with increased
serum ferritin levels. During a heightened inflammatory state,
cytokines, particularly IL-6, stimulate ferritin and hepcidin
synthesis (McDermid et al., 2013; Daher et al., 2017).
Figure 1. COVID-19 infection and Iron dysregulation.
COVID-19 infection results in an inflammatory state involving a cytokine storm in
COVID-19 patients. IL-6 stimulates ferritin and the synthesis of hepcidin. Hepcidin
sequesters iron in the enterocytes and macrophages, leading to increased
intracellular ferritin, and preventing iron efflux from enterocytes and macrophages.
Excess intracellular iron interacts with molecular oxygen, generating reactive
oxygen species (ROS) through Haber-Weiss and Fenton reactions and reactive
nitrogen species (RNS) and reactive sulfur species (RSS). The intracellular iron
excess leads to ferroptosis, a process of programmed cell death. Iron overload may
also affect extra and intracellular mitochondria function and microbiota diversity
(lungs and gut) and blood coagulation.
Hepcidin, the key iron regulatory hormone, sequesters iron in
the enterocytes and macrophages, leading to increased intracellu-
lar ferritin, and preventing iron efflux from enterocytes and
macrophages (Daher et al., 2017) (Figure 1). Thereby, we speculate
that increased serum ferritin levels as a result of COVID-19 related
hyper-inflammation signify a vicious cycle of events where
increased ferritin levels may lead to further tissue damage (Kell
and Pretorius, 2014).

Excess intracellular iron interacts with molecular oxygen,
generating reactive oxygen species (ROS) (Kell and Pretorius,
2014). This may largely contribute to oxidative damage of cellular
components of different organs (lungs, liver, kidney, heart).
Mounting evidence links increased ferritin levels to various
inflammatory pathologies including cardiovascular events (Kno-
vich et al., 2009). Moreover, the complex interplay between iron
metabolism and reactive nitrogen species (RNS) and reactive sulfur
species (RSS) in addition to ROS suggests a clear interaction
between iron metabolism and the newly defined reactive species
interactome (Cortese-Krott et al., 2017) (Figure 1).

Interestingly, recent studies implicated that ferroptosis, which
is the process of programmed cell death mediated by iron-
dependent peroxidation mechanisms (Ursini and Maiorino, 2020)
in inflammatory pathologies, involves multiple organs including
liver, kidney, heart and lung (Sun et al., 2020). Ferroptosis was
found to be linked to neurological disturbances including cognitive
impairment (Sun et al., 2020), agueusia and anosmia (taste and
smell loss) (Osaki et al., 1996; Dinc et al., 2016) that are regular
manifestations of COVID-19 disease (Vaira et al., 2020). Iron
chelators and ferroptosis inhibitors had protective effects by
inhibiting intracellular iron induced lipid peroxidation (Kernan
and Carcillo, 2017). The impact of iron overload on extra and
intracellular mitochondria dysfunction (Rouault, 2016), on micro-
biota dysbiosis (lungs and gut) (Yilmaz and Li, 2018) and on other
pathogens may be strongly implicated as shown in Figure 1.

Furthermore, serum coagulability is a major concern in COVID-
19 pathogenesis, and rapidly recognized as a key risk factor in
susceptible patients (Giannis et al., 2020; Lodigiani et al., 2020;
Oxley et al., 2020; Zhang et al., 2020). In the context of the cellular
iron overload, it has long been documented that coagulopathy is a
hallmark of iron toxicity. Oxidized iron accelerates serum
coagulation by interacting with proteins of coagulation cascade
(Jankun et al., 2014).

Coagulation and cardiac biomarkers have been described to be
elevated in COVID-19 patients, reflecting an inflammatory status
characterized by coagulation activation and vascular endothelial
dysfunction, found to be predictors of mortality (Giannis et al.,
2020; Lodigiani et al., 2020). A recent report demonstrated acute
formation of large vessel strokes in young adults infected with
COVID-19 (Oxley et al., 2020). The inflammation in the blood vessel
walls and platelets mitochondria alteration may be driving
thrombosis formation (Giannis et al., 2020; Lodigiani et al.,
2020; Oxley et al., 2020; Zhang et al., 2020).

Conclusion

Hyper-ferritinemia observed in COVID-19 patients may be
induced in response to inflammation. However, its role in COVID-
19 disease progression has not been fully established. It has been
reported that hyper-inflammation in association with altered iron
homeostasis may play a key role in pathogenesis of disease including
viral infections (Drakesmith and Prentice, 2008; Schmidt, 2020)
(Figure 1). It may be postulated that hyper-ferritinemia is associated
with a state of iron toxicity which may result from increased ferritin
leakage from damaged tissue releasing free iron in the process. There
is no established consensus to exclude this possibility. Therefore, it is
crucial to investigate coexisting iron parameters in COVID-19
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patients including transferrin saturation, plasma iron levels, non-
transferrin bound iron (NTBI) as well as hepcidin. The association of
hyper-ferritinemia with increased transferrin saturation may reflect
a state of iron overload. In this case, we suggest that targeting the
intracellular iron overload may be a strategy of vital importance
needed to be taken into consideration in future controlled clinical
trials.

We suggest, in addition to treatment of the inflammatory state
(Moore and June, 2020), to envisage the application of approved
iron chelators, ferroptosis inhibitors, hepcidin modulators and
erythropoietin (Monti et al., 2002; Pinto et al., 2008; Eshagh
Hossaini and Haeri, 2019; Bessman et al., 2020; Hadadi et al., 2020).
This promising therapeutic approach can be associated with drugs
that specifically target extra and intracellular mitochondria
dysfunction or even the reactive species interactome production
and ferroptosis (Cortese-Krott et al., 2017; Kernan and Carcillo,
2017) (Figure 1).
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